Identification of lung adenocarcinoma specific dysregulated genes with diagnostic and prognostic value across 27 TCGA cancer types

نویسندگان

  • Jun Shang
  • Qian Song
  • Zuyi Yang
  • Dongyao Li
  • Wenjie Chen
  • Lei Luo
  • Yongkun Wang
  • Jingcheng Yang
  • Shikang Li
چکیده

As the most common histologic subtype of lung cancer, lung adenocarcinoma (LUAD) contributes to a majority of cancer-related deaths worldwide annually. In order to find specific biomarkers of LUAD that are able to distinguish LUAD from other types of cancer so as to improve the early diagnostic and prognostic power in LUAD, we analyzed 10098 tumor tissue samples across 27 TCGA cancer types and identified 112 specific expressed genes in LUAD. Meantime, 8240 LUAD dysregulated genes in tumor and normal samples were identified. Combining with the results of specific expressed genes and dysregulated genes in LUAD, we found there were 70 specific dysregulated genes in LUAD (LUAD-SDGs). Then ROC curve revealed six LUAD-SDGs that may be of strong diagnostic value to predict the existence of cancer (area under curve[AUC] > 95%). Kaplan-Meier survival analysis was performed to identify 6 LUAD-SDGs associated with patients' prognosis (P-values < 0.001). Multivariate Cox proportional hazards regression was employed to demonstrate that the six LUAD-SDGs were independent prognostic factors. Then, we used the six overall survival (OS)-related LUAD-SDGs constructing a six-gene signature. Multivariate Cox regression analysis suggested that the six-gene signature was an independent prognostic factor of other clinical variables (hazard ratio [HR] = 1.5098, 95%CI = 1.2996-1.7538, P < 0.0001). Based on our findings, we first presented the LUAD-SDGs for LUAD diagnosis and prognosis. Our results may provide efficient biomarkers to clinical diagnostic and prognostic evaluation in LUAD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identifying cancer type specific oncogenes and tumor suppressors using limited size data

Cancer is a complex and heterogeneous genetic disease. Different mutations and dysregulated molecular mechanisms alter the pathways that lead to cell proliferation. In this paper, we explore a method which classifies genes into oncogenes (ONGs) and tumor suppressors. We optimize this method to identify specific (ONGs) and tumor suppressors for breast cancer, lung adenocarcinoma (LUAD), lung squ...

متن کامل

Bioinformatics Identification of miRNA-mRNA Regulatory Network Contributing Primary Lung Cancer

Introduction: In clinical practice, distinguishing invasive lung tumors from primary tumors remains a challenge. With recent advances in understanding biological alterations of tumorigenesis and molecular analytic technologies, using these molecular alterations can be sensitive and tumor-specific as biomarker for the stratification of patients. In this study, the molecular network of miRNA-mRNA...

متن کامل

Bioinformatics identification of miRNA-mRNA regulatory network contributing to lung cancer invasion

Background: Over the past 15 years, significant insights have been gained into the roles of miRNAs in cancer. In various cancers, miRNAs can act as oncogenes, tumor suppressors, or control the metastasis process by modulating the expression of numerous target genes. This study is aimed at determining molecular network of miRNA-mRNA regulating lung cancer invasion, by bioinformatics approaches. ...

متن کامل

Augmented expression levels of lncRNAs ecCEBPA and UCA1 in gastric cancer tissues and their clinical significance

Objective(s): As the second cause of cancer death, gastric cancer (GC) is one of the eminent dilemmas all over the world, therefore investigating the molecular mechanisms involved in this cancer is pivotal. Unrestricted proliferation is one of the characteristics of cancerous cells, which is due to deficiency in cell regulatory systems. Long non-coding RNAs (lncRNAs) have emerged as critical re...

متن کامل

Identification of Prognostic Genes in Her2-enriched Breast Cancer by Gene Co-Expression Net-work Analysis

Introduction: HER2-enriched subtype of breast cancer has a worse prognosis than luminal subtypes. Recently, the discovery of targeted therapies in other groups of breast cancer has increased patient survival. The aim of this study was to identify genes that affect the overall survival of this group of patients based on a systems biology approach. Methods: Gene expression data and clinical infor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017